11,931 research outputs found

    Renyi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations

    Full text link
    We investigate the large-time asymptotics of nonlinear diffusion equations ut=Δupu_t = \Delta u^p in dimension n≥1n \ge 1, in the exponent interval p>n/(n+2)p > n/(n+2), when the initial datum u0u_0 is of bounded second moment. Precise rates of convergence to the Barenblatt profile in terms of the relative R\'enyi entropy are demonstrated for finite-mass solutions defined in the whole space when they are re-normalized at each time t>0t> 0 with respect to their own second moment. The analysis shows that the relative R\'enyi entropy exhibits a better decay, for intermediate times, with respect to the standard Ralston-Newton entropy. The result follows by a suitable use of the so-called concavity of R\'enyi entropy power

    Dimensionality of Local Minimizers of the Interaction Energy

    Full text link
    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated to a repulsive-attractive potential. We show how the imensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin.Comment: 27 page

    Nonlocal interactions by repulsive-attractive potentials: radial ins/stability

    Full text link
    In this paper, we investigate nonlocal interaction equations with repulsive-attractive radial potentials. Such equations describe the evolution of a continuum density of particles in which they repulse each other in the short range and attract each other in the long range. We prove that under some conditions on the potential, radially symmetric solutions converge exponentially fast in some transport distance toward a spherical shell stationary state. Otherwise we prove that it is not possible for a radially symmetric solution to converge weakly toward the spherical shell stationary state. We also investigate under which condition it is possible for a non-radially symmetric solution to converge toward a singular stationary state supported on a general hypersurface. Finally we provide a detailed analysis of the specific case of the repulsive-attractive power law potential as well as numerical results. We point out the the conditions of radial ins/stability are sharp.Comment: 42 pages, 7 figure

    Numerical Study of a Particle Method for Gradient Flows

    Get PDF
    We study the numerical behaviour of a particle method for gradient flows involving linear and nonlinear diffusion. This method relies on the discretisation of the energy via non-overlapping balls centred at the particles. The resulting scheme preserves the gradient flow structure at the particle level, and enables us to obtain a gradient descent formulation after time discretisation. We give several simulations to illustrate the validity of this method, as well as a detailed study of one-dimensional aggregation-diffusion equations.Comment: 27 pages, 21 figure

    Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations

    Full text link
    In this paper we study the diffusion approximation of a swarming model given by a system of interacting Langevin equations with nonlinear friction. The diffusion approximation requires the calculation of the drift and diffusion coefficients that are given as averages of solutions to appropriate Poisson equations. We present a new numerical method for computing these coefficients that is based on the calculation of the eigenvalues and eigenfunctions of a Schr\"odinger operator. These theoretical results are supported by numerical simulations showcasing the efficiency of the method
    • …
    corecore